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Quantum information processing relies on the precise control of non-classical states in the presence
of numerous uncontrolled environmental degrees of freedom. The interaction between these relevant
degrees of freedom and the environment is typically seen as detrimental because it leads to energy
dissipation and quantum state decoherence. However, when dissipation is precisely controlled, it can
become a crucial tool for manipulating quantum information. Dissipative engineering can achieve
quantum measurement, quantum state preparation, and quantum state stabilization. This paper
systematically introduces quantum dissipation and its applications in quantum error correction and
quantum simulation.
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I. INTRODUCTION

Dissipation often exists in arbitrary quantum systems.
Uncontrolled dissipation could destroy coherence, de-
grade the fidelity of quantum gates in quantum infor-
mation as well as add noise to measurement signals.
All attempts to build quantum computers are hindered
by noise generated by uncontrolled interactions between
qubits and their environment. However, carefully tuned
quantum noise in the form of engineered dissipation can
be harnessed for various purposes, such as protecting
states from unwanted noise, controlling the dynamical
evolution of systems, and implementing constraints.

The theory of dissipation is generally described in the
form of master equation and quantum operations. The
former emphasizes dissipation, while the latter is more
generalized.We mainly use the form of master equation
in this paper to elaborate quantum dissipation and in-
troduce some of its applications.

II. LINDBLAD MASTER EQUATION

A. Mathematical Expressions

The evolution of the density matrix of a closed system
satisfies the Liouville equation. However, general closed
systems tend to be large, and we often focus on a small
subsystem. Assuming the combined Hamiltonian of the
quantum subsystem and the external environment is

Ĥall = ĤS ⊗ ÎB + ÎS ⊗ ĤB + λĤSB , (1)

where ĤS and ĤB represent the free Hamiltonians of the
quantum system and the environment, respectively, ĤSB

denotes the coupling between the two systems, and λ is
the coupling coefficient which is generally considered to
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be a small quantity relative to the energy scale of the
system.

In the Schrödinger picture, the dynamical evolution of
the system is given by the Liouville equation:

dρ(t)

dt
=

1

ih̄

[
Ĥall, ρ (t)

]
. (2)

Using the Born approximation, Markov approximation,
and rotating wave approximation, the evolution of the re-
duced density matrix of the subsystem satisfies the Lind-
blad master equation[1–3]:

dρs(t)

dt
=

1

ih̄

[
Ĥ, ρs (t)

]
+
∑
k

γk

[
L̂kρsL̂

†
k − 1

2

{
L̂†
kL̂k, ρs(t)

}]
.

(3)

Where Ĥ = ĤS + ĤLS represents the Hamiltonian of the
subsystem plus the correction term induced by the envi-
ronment, corresponding to the Lamb shift term in quan-
tum electrodynamics (QED), which is generally small
and can be neglected. γk ≥ 0 is the dissipation rate,
characterizing the strength of dissipation, and Lk is the
Lindblad operator, which represents the operator that
causes the system state to change due to the coupling
between the system and the environment.

B. Quantum Jump Theory.

Quantum jump theory (quantum trajectory theory) is
a more intuitive way of deriving the master equation than
the Born Markov approximation.

Considering the dissipation of a cavity field in quantum
optics[4], for photons in a single-mode cavity, they can be
absorbed by the cavity walls. Assuming that the cavity
walls are at absolute zero temperature (T=0).

Assuming that the cavity field before a jump occurs
is in the state |ψ⟩, the probability δ P of a photon be-
ing absorbed within a time interval δ t should be pro-
portional to the time interval and the average photon
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number
〈
ψ
∣∣a†∣∣ψ〉in the state |ψ⟩, so that

δP = γ
〈
ψ
∣∣a†∣∣ψ〉 δt, (4)

where γ is the photon loss rate.
The normalized quantum state after a photon jump is

|ψ⟩ → |ψjump⟩ =
a |ψ⟩

[⟨ψ |a†|ψ⟩]1/2
=

√
γδt

δP
a |ψ⟩ . (5)

The probability of a photon not being absorbed within
the time δt is (1−δP ). Assume the effective Hamiltonian
for the non-unitary evolution of the cavity field is Heff =
H − iγ2a

†a. When a photon is not absorbed, the cavity
field evolves to

|ψ⟩ → |ψno−jump⟩ =
e−iHeff δt |ψ⟩[〈

ψ
∣∣∣eiH†

eff δte−iHeff δt
∣∣∣ψ〉]1/2

≈ [1− iHδt− a†a(γ/2)δt]|ψ⟩
(1− δP )1/2

.

(6)
Therefore
ρ (t+ δt) = ρ (t)− iδt [H, ρ (t)]

+
γ

2
δt

{
2aρ (t) a† − a†aρ (t)− ρ (t) a†a

}
.

(7)

When δt→ 0,
dρ

dt
= −i [H, ρ] + γ

2

{
2aρ (t) a†

−a†aρ (t)− ρ (t) a†a
}
.

(8)

This is known as the quantum master equation, which
describes the time evolution of the optical field in a single-
mode cavity under the condition of loss at absolute zero
temperature. It is essentially the dissipation equation for
the cavity field, and it is consistent with the results given
by the Lindblad master equation, where the Lindblad
operator in this case is a. Meanwhile, the above equation
can be expressed as

dρ

dt
= −i(Heffρ− ρH†

eff ) + γaρ (t) a†, (9)

Heff = H − iγ2a
†a, which describes the evolution gov-

erned by a non-Hermitian effective Hamiltonian, along
with the quantum jumps induced by the coupling with
the environment.

In the following, dissipation will be employed to feed-
back the measurement and control the dynamic evolution
of the system. We first introduce the quantum Zeno ef-
fect.

III. ZENO EFFECT

A. What is Zeno Effect

According to Zeno’s paradox, when Achilles reached
the starting point of the turtle, the turtle had moved

FIG. 1. Collapse of a three-level energy system into a two-
level subspace. Figure reproduced from [5].

forward for a certain distance, and this process repeated
indefinitely, rendering Achilles unable to catch up with
the turtle. For an arrow in flight, observing it at any
given moment reveals a static state. However, in re-
ality, motion is a continuous process over time, rather
than a discrete instant, and there is no moment where
the derivative of the arrow’s displacement is zero, thus
indicating that the arrow is indeed in motion.

The quantum Zeno effect borrows the concept from
Zeno’s paradox. During the evolution of a quantum sys-
tem, if we measure the system, its wave function will col-
lapse. When the measurement is continuous, the system
will no longer evolve.

For example, there is a two-level system undergoing
Rabi oscillations between state 1 and state 2. The prob-
ability of finding the system in state |1⟩ at time t is

P1(t) = cos2
(
ΩRt

2

)
, (10)

and the probability of finding it in state |2⟩ is

P2(t) = sin2

(
ΩRt

2

)
, (11)

where ΩR is the Rabi frequency. If the time interval
between measurements and the start of evolution is suf-
ficiently short, ΩRt ≪ 1, such that P1(t) → 1 and
P2(t) → 0. Considering performing n projective measure-
ments uniformly distributed over a total time t, the sur-
vival probability of the initial state of the system should
be

P (t) = cos2n
(
ΩRt

2n

)
. (12)

It can be seen that as n → ∞, P (t) → 1, which means
when the measurement frequency is much higher than the
oscillation frequency, the system will be frozen in state
|1⟩.

The measurement is performed by emitting a driving
pulse with frequency ω13 at time t, which results in a
projective measurement of the system. When the sys-
tem collapses to state |1⟩, it undergoes Rabi oscillations
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FIG. 2. Zeno Gate: (a) experimental Setup, (b) energy Level Structure, (c) frequency Detunings. Figure reproduced from [6].

between states |1⟩ and |3⟩, emitting a series of photons.
After the measurement, the system returns to state |1⟩
after one oscillation cycle. However, if the system col-
lapses to state |2⟩, no photons are generated, and the
system remains in state|2⟩ throughout the duration of
the measurement.

The Zeno effect is relevant for engineered dissipation
when the coupling to the environment is strong. Con-
sider the case where, Instead of measurement our two-
level system, we give an incoherent decay from |2⟩ to
|1⟩, corresponding to the spontaneous emission of pho-
tons with a rate Γ and described by a Lindblad operator
L =

√
Γ |1⟩ ⟨2| .

When the dissipation rate is much smaller than the
Rabi frequency (Ω ≫ Γ), the system still undergoes
Rabi oscillations. However, when the dissipation rate is
much larger than the Rabi frequency(Ω ≪ Γ), the dy-
namics conditioned by the absence of an dissipative event
are described by a non-Hermitian effective Hamiltonian
Heff = H − iΓ |2⟩ ⟨2| . Therefor the state |2⟩ acquires
an imaginary phase, shifting its energy away from the
real axis and introducing an effective detuning. The cou-
pling between |1⟩ and |2⟩ becomes non-resonant, and the
system is frozen in |1⟩, achieving the same effect as mul-
tiple rapid measurements. Therefore, the quantum Zeno
effect is not limited to systems that are explicitly mea-
sured, and dissipation can be interpreted as ”measure-
ments from the environment.”

Therefore, we can utilize strong dissipation for coher-
ent control of the system. For a three-level system with
the energy level structure depicted in the figure, if a very
strong dissipation is introduced to |2⟩, the system will
simply undergo Rabi oscillations between |1⟩ and |3⟩,
never transitioning to |2⟩. For this driven-dissipative sys-
tem, the relevant subspace is formed by the states |1⟩ and
|3⟩.

B. Zeno Gate

We can also achieve coherent control of a system using
weak measurements. Consider a system where a quan-

tum three-level system and a qubit are dispersive coupled
to a resonant cavity, but there is no interaction between
q1 and q2. Fig.2(b) depicts the energy level structure of
the system, and the right figure shows the dispersive spec-
trum. The cavity resonance frequencies for each state
are well separated, and probing the cavity resonance fre-
quency allows us to infer the state of the quantum three-
level-qubit system. We achieve this by applying a driv-
ing pulse from one port and monitoring the output from
another port. By applying a drive at ωfe, we perform
continuous measurement, equivalent to applying a pro-
jection P on the system.

The Hamiltonian under the Zeno effect is

HZeno = PHP

= ih̄
ΩR

2
P (|e⟩⟨f | − |f⟩⟨e|)⊗ (|g⟩⟨g|+ |e⟩⟨e|)P

= ih̄
ΩR

2
(|eg⟩⟨fg| − |fg⟩⟨eg|).

(13)
where Rabi oscillations occur only between the eg and fg
states.

Consider the time evolution operator

U = exp (−iHZenot/h̄) (14)

where HZeno = ih̄ΩR

2 (|eg⟩⟨fg| − |fg⟩⟨eg|).
After evolving a period t = 2π/ΩR|eg⟩ will carry the

phase of π, so a kind of phase gate can be realised, just
as Fig.3 shows.

Fig.3(a) shows the evolutionary stages, demonstrating
the modulation intervals in which they are located at
different moments. And Fig.3(b) shows the evolution re-
sults, with the size of the squares representing the propor-
tion of the distribution of the superposition states, and
the colours representing the phases between the states.
It can be seen that the eg state acquires a π phase after
one cycle of evolution.
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FIG. 3. Phase gates (a) evolutionary stages (b) evolutionary
results. Figure reproduced from [6].

FIG. 4. The dephasing and decay in quantum systems. Figure
reproduced from [5].

IV. QUANTUM ERROR CORRECTION

A. Quantum Feedback

In the context of quantum computing, we aspire to
achieve sufficiently long coherence times, which are often
limited by noise from uncontrolled degrees of freedom.
Quantum feedback is one of the methods to actively re-
duce noise and extend coherence times in these systems.
Consequently, quantum feedback is also a crucial com-
ponent of all proposals for fault-tolerant quantum com-
putation.

One of the most significant applications of quantum
measurement and feedback is quantum error correction.
A typical approach to quantum error correction utilizes
stabilizers or syndrome measurements, which refer to
measurements that do not disturb the logical state but
provide information that can be used to detect and cor-
rect errors. Quantum information is stored in a redun-
dant manner, and syndrome measurements detect er-
rors at a stage where they can still be corrected. Er-
rors are corrected through gate operations that rotate
the system back to the logical computational subspace,
or syndrome measurements are recorded and an appro-
priate correction is applied at the end of the computa-
tion. When the interaction between a qubit and its en-
vironment leads to dissipation, the Lindblad operator is
L =

√
γσ−orL =

√
γa.

FIG. 5. The circuit of superconduction qubit for quantum
error correction. Figure reproduced from [7].

B. Quantum Error Correction in Superconducting
Circuit

Considering the circuit depicted in the Fig.5, which
consists of two transmon qubits (with three energy levels,
labeled as l and r), two LC resonators (labeled as Sl and
Sr), and three SQUIDs. The Hamiltonian is

H = HP +HS +HPS ,

HP = −WXlXr +
δ

2
(P 1

l + P 1
r ),

HS = (W +
δ

2
)(a†SlaSl + a†SraSr),

HPS = Ω(a†l aSl + a†raSr +H.c.).

(15)

Here, Pn
k = |nk⟩ ⟨nk| (n = 0, 1, 2 k = l, r), Xk = (a†ka

†
k+

akak)/2.
Labeling |L0⟩ and choose to act as our logical state

manifold:

|L0⟩ =
|0l⟩+ |2l⟩√

2
⊗ |0r⟩+ |2r⟩√

2
⊗ |0Sl0Sr⟩ . (16)

First, tackling photon loss errors, a white noise error
source which to a good approximation occurs at rates
independent of many-body energetics. Without loss of
generality, we consider a single-photon loss in the left
qubit, which sends

al |L0⟩ = |1l⟩ ⊗
|0r⟩+ |2r⟩√

2
⊗ |0Sl0Sr⟩ . (17)

However, these states are not eigenstates of H, In the
limit W ≫ Ω, the full single-photon excited states are

|E0±⟩ =
1√
2

[
|1l⟩ ⊗

|0r⟩+ |2r⟩√
2

⊗ |0Sl0Sr⟩

± |0l⟩+ |2l⟩√
2

⊗ |0r⟩+ |2r⟩√
2

⊗ |1Sl0Sr⟩
]
.

(18)

Therefore,

al |L0⟩ =
|E0+⟩+ |E0−⟩√

2
. (19)

In this case, the state is exactly a superposition of single-
photon excited states. Error correction can be achieved
by rapidly dissipating the photon in the resonator.
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FIG. 6. Schematic of superconducting quantum circuit cou-
pling. Figure reproduced from [8].

V. QUANTUM SIMULATION

Dissipative systems are widely used in quantum simu-
lation, allowing for the observation of rich phase diagrams
and the realization of some exotic stable phases.

A. Two-Body Jaynes-Cummings Model

For example, dissipative Phase Transition in the Two-
Body Jaynes-Cummings Model is shown in Fig.6. For
the traditional interaction between light and a two-level
atom, the Ĥ in RWA is

ĤJC = νcâ
†â+ νaσ̂

+σ̂− + g
(
σ̂+â+ σ̂−â†

)
. (20)

Extending to a two-body system with a cavity field
coupled to each side separately

Ĥdimer =
∑

s=L/R

ĤJC
s − J

(
â†LâR + â†RâL

)
, (21)

where J represents the hopping of phonons between the
two sides, and the master equation is

∂ρ̂

∂t
= i

[
ρ̂, Ĥdimer

]
+

∑
i=L,R

(κ
2
L [âi] +

γ

2
L
[
σ̂−
i

])
, (22)

where L[Ô] = 2Ôρ̂Ô†− ρ̂Ô†Ô− Ô†Ôρ̂ is a Liouvillian su-
peroperator characterizing the dissipation of the system.

To prepare coherent states for measurement, we con-
sider studying

Î =
â+ â†

2
,

Q̂ = i
â† − â

2
,

(23)

Homodyne Signal is

ξ =
〈
Î
〉2

+
〈
Q̂
〉2

, (24)

and the number of photons should be
〈
Î2 + Q̂2

〉
.

The Fig.7(a)(b) depicts the experimental circuit,
which consists of two transmon qubits, each coupled to

FIG. 7. Experimental setup and signal pulse waveform. Fig-
ure reproduced from [9].

a resonant cavity. The hopping is achieved by a capac-
itor placed in the middle of the resonant cavities. The
Fig.7(c) shows the driving signal. At the beginning of the
experiment, the cavities are first excited by the driving
signal while the control qubits are both in their ground
states. Once the excitation reaches the target cavity pop-
ulation, the qubit driving is shut off at an arbitrary time
and the interaction is turned on, thereby obtaining dif-
ferent non-steady states. This moment is marked as the
start of the measurement.

During the experiment, a phase transition was ob-
served. When the photon number is less than a certain
threshold, the system transitions from non-local oscilla-
tions and linear exponential decay to nonlinear super-
exponential decay. After the signal decays to zero, it
stabilizes to a local state.

The experimental results are shown in Fig.8. Fig.8(a)
measures the state with and without photon interac-
tion. The red line represents the case without interac-
tion, where the signal exhibits continuous exponential
decay. The blue line is the measurement with interaction
turned on, and it can be seen that after a period of time,
it transitions to super-exponential decay. Fig.8(b) shows
measurements with different initial populations, demon-
strating that a phase transition occurs at a threshold
value for all cases. Fig.8(c) adds measurements of pho-
ton numbers, revealing that while there are still photons
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FIG. 8. Experimental measurement results for Two-Body
Jaynes-Cummings model. Figure reproduced from [9].

FIG. 9. 1D cQED lattice (a) experimental setup (b) (c) detail
view (d) equivalent model. Figure reproduced from [10].

present in the local state, the oscillation phenomenon has
disappeared. The phase diagram Fig.8(d) shows two dis-
tinct phases: the local state and the non-local state.

B. Dissipative Phase Transitions In a 1D cQED
Lattice

We can attempt to generalize the model to a multi-
body system by introducing dissipation to each compo-
nent. This generalization can be applied to a multi-body
model, for instance, where 72 transmon qubits are indi-
vidually coupled to resonators and then interconnected.
Transmission intensity can be measured from the first
node as the input and the final node as the output.

Using one-dimensional circuit quantum electrodynam-
ics (cQED), a Bose-Hubbard-like model can be con-
structed, which is coupled to cavities. The corresponding

FIG. 10. 1D cQED lattice experimental and simulation re-
sults. Figure reproduced from [10].

Hamiltonian is

H =
∑
j

(
Hr

j +Hq
j +Hrq

j

)
+

∑
⟨j,j′⟩

Hhop
j,j′ +Hd. (25)

where resonator energy Hr
j = h̄ωca

†
jaj . Transmon

qubit energy Hq
j = h̄Ωjb

†
jbj +

1
2Ub

†
jb

†
jbjbj , means the lat-

ter having the Hubbard interactions. Weak interactions
between resonator and quantum bits using the rotating
wave approximation Hrq

j = h̄gj(ajb
†
j +H.c. ). The hop-

ping term for the nearest-neighbour resonator phonon
Hhop

j,j′ = h̄t(aja
†
j′ +H.c. ). And the first node microwave

drive term Hd = h̄ϵ (t) a1e
iωdt +H.c..

The transmission spectrum was experimentally ob-
served with respect to the driving intensity and fre-
quency. It is found that at higher driving intensities,
the resonance peaks and local minima at lower times are
no longer present, but a region of strong suppression is
present, as shown in Fig.10(a). It can be seen that two
phases clearly appear, and a hysteresis phenomenon is
also observed, as shown in Figs.10(c)(d). An increase in
drive strength stays in the resonant localised phase for
an additional period, while a decrease in drive strength
has the same effect.

The transmission intensity should be related to the av-
erage value of the annihilation operator, and the master
equation is

∂ρ

∂t
=
i

h̄
[ρ,H] +

∑
j

(
κ

2
L [aj ] +

Γ

2
L [bj ]

)
(26)

Utilizing the mean-field approximation, making αj =
⟨aj⟩ and βj = ⟨bj⟩, we obtain the dynamical evolution
that satisfies[11]

iα̇j =
(
ωc − ωp − i

κ

2

)
αj + gjβj + t (αj−1 + αj+1) + ϵδj,1

iβ̇j =

(
Ωj − ωp − i

Γ

2

)
βj +

U

h̄
|βj |2 βj + gjαj

(27)
Fig.10(b) plots the average value of the annihilation oper-
ator for the last cavity, and it can be seen that it exhibits
qualitative consistency with the experimental results.
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FIG. 11. 8-node superconducting quantum circuit (a) ex-
perimental setup (b) parameter measurements (c) equivalent
model. Figure reproduced from [12].

FIG. 12. Quantum walk (a) Equivalent node (b) Quantum
walk without dissipative drive (c) Results with dissipative
drive on. Figure reproduced from [12].

C. Dissipation-stabilised Photonic Mott Insulators

Considering the Bose cold atom system, in which the
two most classical phases are the superfluid phase and
the Mott insulator phase. These phases can be analyzed
using the mean-field approximation. Here, we have con-
structed an analogous Bose-Hubbard chain using super-
conducting quantum circuits, which consists of 8 trans-
mon qubits, a coherent drive on the right side, and dis-
sipation, just as Fig.11(a) shows. The experimental pa-
rameters for each node are shown in Fig.11(b).

Fig.11(c) shows the equivalent model with the Hamil-

tonian

HBH = −
∑
⟨i.j⟩

Jija
†
iaj+

U

2

∑
i

ni (ni − 1)+
∑
i

ϵini (28)

The two rightmost nodes serve as dissipation stabiliz-
ers, which can stabilize the Mott insulator phase. The
physical process involves the injection of two photons into
the middle node using a coherent drive when both nodes
are in a hole-occupied state. These photons undergo elas-
tic collisions and are distributed to the two side nodes.
However, due to the rapid dissipation of photons in the
rightmost node, the state remains highly stable, ensuring
that the left node does not experience hole occupation.

In the experiment, we first control the leftmost node
to be in a hole-occupied state. It can be observed that
this state propagates through the Bose-Hubbard chain.
When the dissipation stabilizer is turned off, the hole
state continues to propagate in the chain, exhibiting a
quantum walk, as shown in the Fig.12(b). However,
when we turn on the dissipation stabilizer, the hole state
is immediately replenished upon reaching the rightmost
node, ensuring that there are no unoccupied nodes in the
system. This is analogous to the Mott insulator phase in
the Bose cold atom system, as depicted in the Fig.12(c).

VI. SUMMARY

First, we introduced the master equation, a mathemat-
ical theoretical method used to describe dissipative sys-
tems. Then, we discussed the Zeno effect, which utilizes
rapid measurements to maintain the state of a system
and can be used to construct logic gates. Next, we delved
into dissipation in quantum error correction, where dissi-
pation can be harnessed to correct the state of a system.
Finally, we presented quantum simulation, highlighting
that the addition of dissipation can introduce a wealth of
phases to a system and enable the stabilization of these
phases.

Similarly, there is considerable progress in quantum
dynamical systems[13]. These differ from their classi-
cal counterparts not only owing to the structure of the
underlying microscopic equations, but also owing to the
importance of quantum entanglement. Dissipative sys-
tems hold significant applications and research value in
physics, and there are still many open questions to be
explored.
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